
Beyond the Shadows: A Deep Dive into Profiling
Modern Mixed-Modal and Multi-modal

Transformer Models

Oruç Cakir1, Julian Pavon2,3[0000−0002−8291−509X], Betül
Aydeg̃er1[0009−0003−9117−4750], Zeynep Yavuz1[0009−0008−3289−675X], Ivan Vargas

Valdivieso[0000−0002−5092−3829], Og̃uz Ergin1[0000−0003−2701−3787], Adrian
Cristal2[0000−0003−1277−9296], and Osman Ünsal2[0000−0002−0544−9697]

1 TOBB University of Economics and Technology, Ankara, Turkey
{initial,surname}@etu.edu.tr

2 Barcelona Supercomputing Center, Barcelona, España
{firstname.surname}@bsc.es

3 Universitat Polytecnica de Catalunya, Barcelona, España
{firstname.surname}@upc.edu

Abstract. The rapid advancement of Large Language Models (LLMs)
has led to increasingly sophisticated architectures, transitioning from
text-based models to multi-modal and mixed-modal systems. These ad-
vancements raise critical questions about model accuracy, execution effi-
ciency, and hardware performance. While Python-based frameworks such
as PyTorch and Hugging Face provide high-level benchmarking tools,
they lack the hardware insights needed for optimizing performance. Con-
versely, hardware-level profilers like perf and NVIDIA nsys offer hard-
ware performance metrics but are less adaptable to emerging models.
To bridge this gap, we introduce Lumina, a unified framework that com-
bines Python’s flexibility with C++’s hardware control to provide a
comprehensive evaluation of LLMs. Lumina integrates profiling tools like
perf, PAPI, nsys, and ncu to assess both functional accuracy and compu-
tational efficiency across CPU and GPU platforms. We demonstrate the
effectiveness of Lumina by profiling LLaVA-Mistral-7B, Chameleon-7B,
and Deepseek-Janus-Pro-7B, showing that on average, Deepseek-Janus-
Pro-7B executes 5.7× faster the others models. Additionally, we present
the first in-depth hardware profiling analysis of mixed-modal models,
offering insights into their computational demands and optimization op-
portunities. Lumina ensures compatibility with evolving LLM architec-
tures, making it a versatile tool for researchers and practitioners opti-
mizing next-generation AI models.

Keywords: Artificial Intelligence · Mixed-modal · Multi-modal · Bench-
marking · Performance Evaluation · GPU Profiling · CPU Profiling

1 Introduction

Recent years have seen explosive growth in Large Language Models (LLMs),
with increasing model sizes, higher accuracy, and diverse architectures. LLMs



2 O. Cakir et al.

have evolved from pure natural language processing (NLP) [14], to optical char-
acter recognition (OCR) [6], and generative AI [14]. Starting with single-expert
architectures [14,19] designed for specific tasks, followed by multi-modal systems
that integrate multiple experts to handle combined text and image inputs. These
systems use techniques like cross-modal fusion [9] to merge data across experts.

More recently, mixed-modal architectures [2, 16] have raised the bar by en-
abling unified processing of both text and image inputs. This early fusion im-
proves LLMs performance and cross-modal understanding, and eliminates out-
put misalignment seen in multi-modal models. By processing both modalities
simultaneously, mixed-modal systems offer better reasoning capabilities.

With the ever-expanding landscape of LLMs —illustrated by the variety of
GPT and LLaMA models —it is increasingly important to assess the perfor-
mance of such models in today’s computing systems. New models like Chameleon
and Deepseek, and the shift from multi-modal to mixed-modal architectures,
prompt questions regarding their functionality and performance: (i) accuracy, (ii)
execution time, (iii) size, (iv) performance bottlenecks, among others. Answering
these questions is critical for selecting the appropriate model for deployment.

Python-based tools [22] dominate LLM evaluation due to their robust ecosys-
tem, including libraries like PyTorch [17], TensorFlow [1] and Hugging Face
Transformers [22], which simplify AI model development. These tools evaluate
high-level performance metrics such as latency, memory consumption, and com-
putation cost. However, they often fall short in providing hardware-level insights,
overlooking performance bottlenecks like the overhead of specific CPU instruc-
tions or GPU thread utilization, which are vital for optimizing LLM execution.

At the hardware level, analyzing parameters such as memory bandwidth,
cache utilization, and branch prediction behavior becomes essential to optimize
LLM performance. Efficient memory access can significantly reduce cache misses,
which in turn can decrease latency and reduce energy consumption. On special-
ized hardware such as GPUs or AI accelerators, efficient memory management
plays a key role in maximizing performance. On edge devices with limited power
and memory resources, optimizing CPU-specific features such as cache utilization
and quantized execution (e.g., INT8/INT4) is crucial to improve the efficiency
of LLM inference. Additionally, as open-source ISAs like RISC-V gain traction,
profiling CPU performance becomes more important for identifying bottlenecks
and optimizing instruction sets tailored to the specific needs of LLM workloads.

Hardware profilers, such as perf [12] and NVidia Nsights [12], are used to asses
the low hardware-level detail in LLM performance analysis. However, these pro-
filers often struggle with evaluating large-scale, complex workloads like LLMs.
This is because the high abstraction level of LLMs, which rely on intricate lay-
ers and large parameter spaces, makes it difficult to map the behavior of each
component directly to low-level hardware details.

While Python-based tools are highly flexible and allow easy integration of
new models and features, they fail to provide the detailed hardware-level anal-
ysis required for an in-depth performance evaluation of LLMs. On the other
hand, nP-based tools provide essential low-level insights into hardware perfor-



2. RELATED WORK 3

mance, but they lack the flexibility of Python-based frameworks and are less
adaptable to the rapid development of new LLM architectures. To address these
challenges, we propose Lumina, a unified framework for LLM performance eval-
uation and hardware profiling. Lumina combines Python’s flexibility with the
low-level hardware and memory management control of C++, enabling detailed
insights into both LLM functionality and hardware-level performance. By lever-
aging tools like perf [13], PAPI [7], nsys [12], and ncu [12], Lumina provides a
comprehensive set of hardware performance metrics, helping researchers identify
and optimize performance bottlenecks. Lumina is designed to seamlessly adapt
to evolving LLM architectures —from traditional text-based models to multi-
modal and mixed-modal systems —ensuring compatibility across a wide range
of LLMs and hardware systems. With its modular approach, Lumina can be
extended to support emerging model formats and architectures, making it a ver-
satile tool for evaluating both functional accuracy and computational efficiency
in next-generation AI models.

We make the following key contributions in this work:

– We present Lumina, an unified framework for performance and hardware pro-
filing analysis. Lumina leverages the flexibility of Python and performance ori-
entation of C++ to build a framework capable of (i) working with multiple
LLM variants and architectures and, (ii) evaluate multiple low hardware level
performance metrics.

– We evaluate the functionality of Lumina by extensively profiling LLaVA-Mistral-
7B [10], Meta Chameleon-7B [16] and Deepseek-Janus-Pro-7B [2], one multi-
modal and two mixed-modal LLMs, respectively. Our evaluation results demon-
strate that Deepseek-Janus-Pro-7B significantly outperform to LLaVA-Mistral-
7B and Chameleon-7B by 4.5× and 6.8×, respectively. Moreover, in this analy-
sis we evaluate both CPU and GPU performance, showcasing the flexibility of
Lumina not to only work with different LLMs architectures but also different
hardware platforms.

– We carried out the first performance and hardware profiling analysis of Chameleon-
7B and Deepseek-Janus-Pro-7B, two mixed-modal LLMs recently released by
Meta and Deepseek, respectively. Moreover, we present the first OCR-based
analysis of the Chameleon-7B and Deepseek-Janus-Pro-7B as well.

2 Related work

2.1 The Recent Development of LLMs

The field of Large Language Models (LLMs) has progressed beyond uni-modal
architectures, which process only textual inputs, toward multi-modal and mixed-
modal models capable of handling diverse data types. Fig. 1 compares uni-modal,
multi-modal and mixed-modal architectures. Early LLMs, such as GPT [14],
focused on natural language processing tasks but were inherently limited to
textual data [19].



4 O. Cakir et al.

To address these limitations, multi-modal models introduced separate vi-
sion and text encoders, combining their outputs through late fusion techniques.
Models such as CLIP [15] and BLIP-2 [9] enabled text-image reasoning, achiev-
ing strong results in tasks like image captioning and visual question answering.
However, their modular design restricts fine-grained cross-modal interactions,
making it difficult to perform spatial reasoning or interpret embedded text within
images [10].

In contrast, mixed-modal architectures integrate image and text inputs into
a shared token space, allowing continuous interaction throughout the model.
Approaches such as Chameleon [16] and Janus-Pro [2] process both modalities
within a single transformer, enabling deeper cross-modal dependencies. While
this improves performance in vision-language tasks, it increases computational
costs and requires large, well-aligned datasets, complicating training and deploy-
ment [10,16].

(a) Unimodal models: 
text-only processing

(b) Multimodal models: 
separate expert modules 

for each modality with late fusion

(c) Mixed-modal models: 
unified processing of text 

and image tokens through early
fusion

Input (Text)

Decoder

Text Expert

Input (Text + Image)

Feature Extractor (Text) Feature Extractor (Image)

Text Expert Image Expert

Output Aligner

Input (Text + Image)

Text + Image Encoder

Text + Image Expert

OutputOutputOutput

Fig. 1. The evolution of LLM architectures.

2.2 Prior Work on LLM Performance Analysis

Python-based tools. [17] are directly integrated in LLM pipelines alongside
AI frameworks such as PyTorch and TensorFlow. These tools leverage built-in
profilers (e.g., PyTorch Profiler [17]) and general-purpose performance analysis
utilities (e.g., Py-Spy [5]) to monitor GPU utilization, FLOPs, and execution
traces. While effective for estimating computational costs, they primarily focus
on high-level operations and often lack detailed insights into hardware inefficien-
cies, such as cache misses, memory stalls, or branch mispredictions.
Hardware profilers. [21] offer fine-grained performance monitoring by inter-
facing directly with CPU and GPU hardware counters. Tools such as perf, PAPI,
Intel VTune, and NVIDIA Nsight provide hardware-level metrics on execution
pipelines, memory access patterns, and processor utilization. However, the high
abstraction level of LLMs makes it difficult to correlate specific model compo-
nents with these raw hardware metrics, often resulting in incomplete or misin-
terpreted performance insights.

Despite these efforts, current profiling approaches lack an integrated solu-
tion that bridges structured LLM benchmarking with detailed hardware-level



3. LUMINA: ARCHITECTURE AND COMPONENTS 5

analysis. Our work addresses this gap by introducing a tool that combines high-
level model evaluation with in-depth profiling, enabling a more comprehensive
understanding of LLM performance across different hardware platforms.

3 Lumina: Architecture and components

Lumina is an unified evaluation and profiling framework carefully designed to
bridge the gap between high-level functional metrics and hardware-level per-
formance analysis. It combines Python’s high-level functionality with C++’s
performance profiling power to deliver detailed insights into both functional and
hardware performance of LLMs. As previously commented, hardware profilers
lack direct integration with AI frameworks. To address this, Lumina automa-
tizes and facilitate the hardware-level evaluation process, including the setup,
benchmarking, results gathering and plotting, and comparison between different
LLMs, significantly reducing the manual effort required. Fig. 2 depicts the archi-
tecture overview and execution flow of Lumina. Next, we delve into the overall
operation flow and components and interconnection of each stage.

Benchmark library (VLMEvalKit)

High-level Performance Results

Check mode
(user/benchmark)

Feature Extraction

C++ Inference
system

Profiling
wrapper

High-level
performance

analysis

Hardware-level
profiling
analysis

Frontend

Execution-profiling

Output-analysis

Low-level Performance ResultsChameleon

Janus pro

LlaVA

Models

Accuracy Energy Consumption
What is the breed of
the John Wick dog?

Weight DistributionIPC

Fig. 2. Lumina architecture overview and execution flow.

3.1 Lumina operation flow

The execution flow in Lumina comprises three key stages:

– Frontend. This stage is the interface between the user and the rest of com-
ponents in Lumina. It works in two modes: (i) user-mode where Lumina
processes end-user queries, and (ii) benchmark mode where it executes dif-
ferent benchmarks using a VLMEvalKit library. By doing so, our tool can be
easily deploy into servers to evaluate not only benchmarks but also queries
from real-users. For every input query the frontend generates embeddings
using the Transformers library [4] in python.



6 O. Cakir et al.

– Execution-profiling. The embeddings generated by the frontend are for-
warded to this stage. For every set of input embeddings, (i) it executes the
inference using a high performance C++-based implementation and (ii) eval-
uates high-level performance or hardware-level profiling metrics. As deeply
explained in §3.3, we have extend the C++-based inference system to sup-
port multiple profiling tools enabling Lumina to evaluate a vast number of
hardware metrics.

– Output-analysis. This stage process the performance and profiling infor-
mation from the Execution-profiling stage and generates read-friendly out-
puts such as plots and tables.

3.2 Frontend components

The frontend is composed of two main modules: the VLMEvalKit [3] and a
feature extraction module.

A. Benchmarking with VLMEvalKit. VLMEvalKit provides standardized
benchmarks for evaluating multi-modal models across text, image, and mixed-
modal tasks. We extend it with a custom save-embeddings() function for
each integrated model, enabling extraction of input embeddings required for
hardware-level profiling. Additionally, Lumina supports quantization-aware bench-
marking (4-bit, 8-bit), with automated control of embedding extraction, activa-
tion logging, and weight distribution dumping through hook-based flags.

B. Feature extraction. This module transforms raw inputs from VLMEvalKit
into embeddings using the transformers library. By decoupling preprocessing
from inference, it allows seamless integration with C++ backends like LlaMA.Cpp,
which lack native multi-modal preprocessing. This design ensures flexibility and
enables efficient profiling for both text-only and mixed-modal models.

3.3 Execution-profiling components

This stage is composed of a C++-based inference system and profile wrap-
per, as shown in Fig. 3. We used a C++ inference implementation, specifically
LlaMA.Cpp [18], due to the performance orientation of C++ algorithms and its
relatively easy integration with hardware profilers. This stage has two modes: a
performance mode, where Lumina only evaluates high-level metrics, and a profile
mode where it generates a detailed profile analysis using the available hardware
level profilers. Every time it process a new query, Lumina checks the execu-
tion mode. This allows to switch between modes in runtime without restarting
Lumina.



3. LUMINA: ARCHITECTURE AND COMPONENTS 7

run time hardware
counters

D
ec

od
er

s

Input activations, weight and output activations distributions

D
ec

od
er

 1

D
ec

od
er

 2

D
ec

od
er

 3

D
ec

od
er

 4

D
ec

od
er

 5

C++-based Inference system

Profiler

Profiler wraper

Profilers

CPU
Perf PAPI

GPU
ncu nsys

Fig. 3. Overview of the Execution-profiling stage.

A. LLM inference using LlaMA.Cpp. LlaMA.Cpp is an open-source C++
project designed to enable the efficient execution of large language models on
diverse hardware platforms. It provides a lightweight, fast, and resource-efficient
runtime. In Lumina, we adapt llama.cpp by fully removing its original frontend
and utilizing it purely as a backend library. This modification enables direct
consumption of input embeddings generated by the feature extraction module,
which are passed seamlessly from the Python-based preprocessing pipeline.

Beyond adapting the input interface, we also extended llama.cpp to sup-
port internal checkpoints for collecting input activations, output activations,
and weight distributions during inference. These checkpoints are inserted at key
locations within the forward pass, enabling Lumina to capture detailed per-layer
statistics essential for performance analysis, debugging, and model optimization.

In addition, we instrumented LlaMA.Cpp with custom hooks to activate
hardware profilers such as perf, papi, nsys, and ncu without altering the core
model logic. These hooks are automatically triggered based on the execution
mode (performance or profile). Although this work relies on llama.cpp as the
inference backend, the architecture of Lumina remains fully plug-and-play: al-
ternative attention systems or inference engines can be integrated, as long as
they support embedding ingestion and provide similar checkpoints for weight
and activation analysis, and expose hooks for profiler integration.

B. Profiler wrapper. As previously mentioned, we extended Llama.Cpp with
hooks to interconnect hardware profilers with different its internal components,
such as the layers. To enable integrating Lumina with any desire hardware-level
profiler, we create the Profiler wrapper, an extendable library that maps the
hooks integrated in LlaMA.Cpp to the profiling calls of any desire profiler allow-
ing for more customization in hardware resource monitoring. If a profiler different
from the already available ones in Lumina is required, the Profilers wrapper can
be easily extend to integrate it. This adaptability ensures Lumina can be used
in various hardware environments and for different profiling requirements.

Currently, Lumina uses perf and PAPI for CPU profiling, and nsys (NVIDIA
Nsight Systems) and ncu (NVIDIA Compute Utilities), the official NVIDIA
profiling tools for GPUs.



8 O. Cakir et al.

3.4 Output-analysis components

Lumina can generate two different set of outputs as shown by Fig. 2: High-
level and hardware-level metrics. The output-analysis stage includes two separate
modules which analyze and generate more friendly outputs, such as plots and
tables. The High-level results include (i) the LLM’s answer(s) to the given user
or benchmark query(ies) and (ii) the following metrics: query latency, hardware
utilization and cost. The hardware-level results include different metrics such as
instructions per-cycle, cache miss/hit ratio, must time consuming instructions,
among others. Hardware-level results are constrained by the available hardware
counters in the baseline hardware platform. All the results can be given per
executed query or a summary of all the results (e.g., geomean).

4 Evaluation

In this section, we evaluate three representative multi-modal and mixed-modal
models, LLaVA-Mistral-7B, Chameleon-7B, and Deepseek-Janus-Pro-7B using
Lumina. Our evaluation focuses on two complementary aspects: functional bench-
marking on standard benchmarks and hardware-level profiling. This combined
analysis provides insights into both the effectiveness and computational charac-
teristics of the evaluated models.

4.1 Hardware Platforms

We evaluate both CPU and GPU systems. Our CPU baseline consists of an
Intel(R) Xeon(R) Platinum 8480+, a server class CPU with 56× 6-way hardware
threads and 105MB of cache. For the GPU baseline, we use four NVIDIA H100.

4.2 Functional Benchmarking Methodology

We employed five widely recognized benchmarks covering a diverse range of
multimodal and mixed-modal tasks. Table 1 summarizes the key characteristics
of each evaluated benchmark.

Table 1. Benchmarks Details

Benchmark Type # Queries # Categories Description
MMBench-Dev [11] Text+Image 4329 20 Perception and reasoning
MMLU [20] Text 15908 57 Factual knowledge and reasoning
MMMU-Pro [23] Text+Image 1730 30 Multi-disciplinary complex reasoning
OCRBench [6] Image 1000 10 OCR-based understanding-reasoning
SEEDBench-IMG [8] Image 14232 57 Spatial and commonsense reasoning



4. EVALUATION 9

4.3 Profiling Methodology

We conducted a detailed profiling to analyze the hardware-level behavior of the
models during inference. We profile both CPU-based and GPU-based inference
implementations, and report the following metrics. For GPUs we report results
using one and four GPUs.

– CPU metrics:
• Memory instructions ratio
• Instructions Per Cycle (IPC)
• L2, and L3 cache miss rates

– GPU metrics:
• Memory Bandwidth
• Kernel Execution Time

The aforementioned hardware metrics were evaluated in this paper due to
space limitations. However, all the profilers included in Lumina support a sig-
nificant larger number of metrics that can be evaluated using our framework.
The profiling process is seamlessly integrated into Lumina and automatically
adapts to the benchmark configuration, ensuring non-intrusive and reproducible
collection of hardware-level information.

Experiments All benchmarking and profiling experiments are conducted under
the 4-bit quantization setting, enabled by our custom extension of VLMEvalKit
to support low-bit inference. Additionally, our framework retains compatibility
with full-precision execution.

4.4 Benchmarking Results

We now present the results of our functional evaluation, where we assess the
effectiveness of each model on the benchmarks listed in Table 1. We report the
accuracy, inference time and number of tokens generated for all the evaluated
models accross all the benchmarks. In the following, we compare the models
both quantitatively and qualitatively across benchmarks.

A. Model accuracy. Fig. 4 (left) depicts the accuracy results across all the ex-
periments. The figure clearly shows that LLaVA-Mistral-7B consistently achieves
the highest accuracy in the majority of benchmarks, especially excelling on the
pure text benchmark MMLU. Deepseek-Janus-Pro-7B outperforms to LLaVA-
Mistral-7B on OCRBench and MMMU-Pro. These benchmarks evaluate complex
reasoning between text and images, where the unified architecture of Deepseek-
Janus-Pro-7B provides better results. In contrast, Chameleon-7B consistently
underperforms, with notably lower accuracy on benchmarks requiring complex
reasoning such as MMBench-Dev, MMMU-Pro and OCRBench. These results
highlight the superior generalization of LLaVA-Mistral-7B, the OCR-oriented ca-
pabilities of Deepseek-Janus-Pro-7B, and the limitations of Chameleon-7B across
diverse benchmarks.



10 O. Cakir et al.

B. Inference time. Fig. 4 (right) reports the CPU inference times of the
evaluated models. Deepseek-Janus-Pro-7B consistently achieves lower inference
latency across most benchmarks, with Chameleon-7B showing moderate per-
formance and LLaVA-Mistral-7B generally exhibiting the highest latency. As
evaluated in the next section (token generation), the number of input tokens
generated per model dictates its performance.

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

69%

59%

19%

52%

72%

16%

33%

11% 10%

37%

66%

44%

25%

59%

70%

MMBench MMLU MMMU_Pro OCRBench SEEDBench

102

103

In
fe

re
nc

e 
Ti

m
e 

(s
ec

) 633

32

1596

744
1037

572 546 514

303

613

207

39

272

178 187

LLaVA-Mistral-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 4. Accuracy (left) and inference time (right) comparison of LLaVA-Mistral-7B,
Deepseek-Janus-Pro-7B, and Chameleon-7B across five benchmarks.

C. Tokens generation. Fig. 5 reports the average number of input and out-
put tokens processed per query. Notably, LLaVA-Mistral-7B tends to process
significantly more input tokens, especially on MMBench-Dev, MMMU-Pro, and
SEEDBench-IMG, which correlates with its longer inference times. On the other
hand, Deepseek-Janus-Pro-7B consistently operates on fewer tokens, which con-
tributes to its faster execution. For the output tokens, Chameleon-7B produces
disproportionately long outputs, particularly in and MMBench-Dev. The main
reason behind is that even when a single A, B or C option answer is requested,
Chameleon-7B’s answer always include an explanation. Even after carefully re-
vising and modifying the queries in the benchmarks, this situation continued. In
contrast, both LLaVA-Mistral-7B and Deepseek-Janus-Pro-7B produce shorter,
more concise outputs, which may align better with benchmark requirements.

D. GPU inference time. Fig. 6 present the inference times on different
number of GPUs. Deepseek-Janus-Pro-7B achieves the lowest latency across
benchmarks, followed by LLaVA-Mistral-7B, while Chameleon-7B consistently
incurs the highest inference times, especially on MMBench-Dev, MMLU, and
SEEDBench-IMG. Scaling from 1× to 4× GPUs does not result in significant
latency reductions for any of the models. This is primarily because even a single
GPU that we used already provides sufficient computational capacity to exe-
cute the models without saturating available resources. Consequently, adding
more GPUs does not lead to noticeable improvements under the batch size and
workload used. These results suggest that inference latency in this setting is



4. EVALUATION 11

MMBench MMLU MMMU_Pro OCRBench SEEDBench
102

103

In
pu

t T
ok

en
s

1887

114

2694

1557
2117

1168

118

1332
1040 1090

699

112

869

595 638

MMBench MMLU MMMU_Pro OCRBench SEEDBench

100

101

102

103

O
ut

pu
t T

ok
en

s

2 2
3

29

2

573

1454

288

13

766

1

24

11 13

1

LLaVA-Mistral-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 5. Average number of input tokens (left) and output tokens (right) processed by
LLaVA-Mistral-7B, Chameleon-7B, and Deepseek-Janus-Pro-7B.

dominated by the models’ intrinsic architectural and token consumption char-
acteristics, rather than GPU hardware limitations.

MMBench MMLU MMMU_Pro OCRBench SEEDBench

100

101

In
fe

re
nc

e 
1 

G
PU

 (s
ec

)

0.41

0.15

0.66 0.76
0.45

17.06

34.79

5.68

0.64

19.29

0.21 0.17

0.33 0.27
0.21

MMBench MMLU MMMU_Pro OCRBench SEEDBench

100

101

In
fe

re
nc

e 
4 

G
PU

 (s
ec

)

0.48

0.21

0.63
0.84

0.56

15.86

35.29

7.18

0.71

14.37

0.31 0.34 0.41 0.38 0.30

LLaVA-Mistral-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 6. Inference time comparison across benchmarks and models on 1×GPU (left)
and 4×GPU (right).

4.5 CPU profiling results

We profile the models running on CPU backends using PAPI profiler. PAPIpro-
vides a detailed view of the computational workload and memory subsystem
behavior during inference.

A. Memory instructions ratio and Instructions per cycle. Fig. 7 reports
the Memory instruction ratio (left) and Instructions per-cycle (right, IPC) for
all the evaluated experiments. LLaVA-Mistral-7B features the higher memory
instructions ratio, especially on MMMU-Pro, reflecting its higher input token
usage. Conversely, Deepseek-Janus-Pro-7B demonstrates lower memory access
intensity, consistent with its shorter token sequences and more efficient memory
utilization.

All models feature comparable IPC values across benchmarks, with Deepseek-
Janus-Pro-7B slightly outperforming others in most cases. The baseline CPU



12 O. Cakir et al.

includes 6-way Out-of-order cores, therefore, the IPC achieves is around 60% to
70% of the peak performance. This results can be attributed to resource con-
tention due to the high number of memory instructions executed. It is noteworthy
to mention how this results highlight new opportunities to further improve the
performance of these model over the baseline CPU.

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
em

 A
cc

es
s 

/ I
ns

tr
uc

tio
n

0.52

0.37

0.70

0.50
0.53

0.49
0.44

0.49
0.45 0.48

0.42
0.37

0.46
0.41 0.42

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0

1

2

3

4

IP
C

4.14
4.32

3.96
4.17 4.134.02 3.90

4.09 4.21
4.00

4.25 4.28 4.17 4.26 4.26
Llava-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 7. Memory instructions ratio (left) and instructions per cycle (right).

B. Cache miss ratio. Fig. 8 shows that Chameleon-7B experiences signifi-
cantly higher L2 and L3 cache miss rates, especially on MMLU and SEEDBench-
IMG. This is likely due to its tendency to generate considerably longer outputs
compared to Deepseek-Janus-Pro-7B and LLaVA-Mistral-7B, resulting in larger
memory footprints. In contrast, the lower miss rates observed for Deepseek-
Janus-Pro-7B and LLaVA-Mistral-7B can be attributed to their more compact
output generation and moderate input sizes, leading to better cache utilization.

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0

10

20

30

40

50

L2
 C

ac
he

 M
is

s 
R

at
e 

(%
)

4.01

9.21

3.60 4.84 3.99

22.22

48.99

13.20

6.60

23.64

5.85

17.24

9.26 7.48 5.78

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0

5

10

15

20

25

L3
 C

ac
he

 M
is

s 
R

at
e 

(%
)

9.81

15.60

12.60 12.63
10.60

24.93
27.04

21.93

11.94

25.68

9.24

21.71

18.34

12.29

8.97

Llava-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 8. L2 and L3 cache miss rate.

C. CPU take aways. Our profiling evaluation using Lumina demonstrates
that there are still multiple areas to improve performance. For instance, the
high number of memory instructions combined with the high number of cache
misses depict that the cache hierarchy is underutilize and could be further im-
provements. This reflects in the 60% to 70% of the peak performance achieved by
all the models. By further analyzing other hardware parameters using Lumina
could bring light to other performance degration sources.



4. EVALUATION 13

4.6 GPU profiling results

We profile the models running on GPU backends using nsys which provides in-
sights into GPU kernel execution, memory operations, and hardware-level per-
formance during inference.

A. Memory transfer analysis. Fig.9 illustrates that LLaVA-Mistral-7B and
Deepseek-Janus-Pro-7B generally exhibit larger host-to-device memory transfer
sizes compared to Chameleon-7B, especially noticeable on MMLU and SEEDBench-
IMG. However, as shown in the right plot, both LLaVA-Mistral-7B and Deepseek-
Janus-Pro-7B achieve lower or comparable transfer latencies than Chameleon-
7B, despite handling larger data. This suggests that Chameleon-7B may suffer
from fragmented or less efficient memory transfers, leading to a higher number of
smaller copies, which is typically suboptimal for GPU memory operations. This
inefficiency is also in line with the previously observed higher inference time of
Chameleon-7B.

MMBench MMLU MMMU_Pro OCRBench SEEDBench

101

H
os

t t
o 

D
ev

ic
e 

(m
b)

14.12 13.95 14.03

10.52

14.14

4.84

1.29

5.38

8.22

4.17

14.29 13.82 13.19 12.33
14.27

MMBench MMLU MMMU_Pro OCRBench SEEDBench
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

H
os

t t
o 

D
ev

ic
e 

(s
ec

)

0.0017 0.0017
0.0016

0.0011

0.0017

0.0006

0.0001

0.0006

0.0009

0.0004

0.0016
0.0015 0.0015 0.0015

0.0016

LLaVA-Mistral-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 9. Host-to-Device memory transfer analysis on 1 GPU: average transferred data
size (left) and average transfer latency (right) across benchmarks and models. Larger
bars in the left plot indicate higher average transfer size per operation, while the right
plot shows the corresponding latency per operation.

Kernel utilization and Memory bandwidth. As illustrated in Fig.10, we
compare the kernel utilization and memory bandwidth of three prominent vision-
language models: LLaVA-Mistral-7B, Chameleon-7B, and Deepseek-Janus-Pro-
7B across five benchmark tasks (10c, EN, IMG, MMLU, and OCRBench). Chameleon-
7B consistently achieves the highest kernel utilization across all tasks, peaking at
94.0% on the MMLU benchmark. In contrast, LLaVA-Mistral-7B and Deepseek-
Janus-Pro-7B show notably lower utilization, particularly on IMG and MMLU,
where values drop to as low as 14.7% and 13.0%, respectively. Despite the dif-
ferences in kernel usage, memory bandwidth remains relatively consistent across
models. All three models maintain a bandwidth between approximately 8 MB/s
and 10.4 MB/s, with Chameleon-7B reaching the highest value of 10.37 MB/s
on the MMLU task. These findings highlight Chameleon-7B’s superior GPU re-



14 O. Cakir et al.

source efficiency, suggesting potential advantages in scalability and performance
under compute-constrained settings.

10c EN IMG MMLU OCRBench
0

20

40

60

80

Ke
rn

el
 U

til
iz

at
io

n 
(%

)

80.8

33.6
37.2

14.7

31.0

78.4

90.9 91.6 94.0

32.735.1

24.9
21.2

15.3 13.0

10c EN IMG MMLU OCRBench
0

2

4

6

8

10

M
em

or
y 

B
an

dw
id

th
 (M

B
/s

)

8.79
8.09 8.40 8.13

9.248.98 9.23

10.37

9.21
8.719.02 8.78 8.65

9.45

8.42

LLaVA-Mistral-7B Chameleon-7B Deepseek-Janus-Pro-7B

Fig. 10. Kernel utilization and memory bandwidth

4.7 Input, Weight and Output Distributions

In addition to benchmarking and profiling, we conduct a layer-wise analysis of the
models by examining the statistical distributions of layers inputs, weights, and-
outputs. For this purpose, we instrument the models with dedicated checkpoints
to capture these distributions at every layer during inference. This analysis en-
ables us to investigate how information flows through the model, layer by layer,
revealing patterns related to representation dynamics, activation variability, and
potential bottlenecks. The per-layer statistics provide valuable insights into the
internal operation of the models beyond their final outputs.

L1 L2 L3 L4 L5 L6 L7 L8 L9
Layer

4

2

0

2

4

6

Va
lu

e

Min, Max, and Mean of Weights per LayerLLaVA-Mistral-7B Mean
LLaVA-Mistral-7B Min
LLaVA-Mistral-7B Max

Chameleon-7B Mean
Chameleon-7B Min
Chameleon-7B Max

Deepseek-Janus-Pro-7B Mean
Deepseek-Janus-Pro-7B Min
Deepseek-Janus-Pro-7B Max

Fig. 11. Weight distributions

Fig.11 illustrates the minimum, maximum, and average weight values across
nine layers for the LLaVA-Mistral-7B, Chameleon-7B, and Deepseek-Janus-Pro-
7B models. This figure serves to demonstrate that the profiling tool is capable
of capturing detailed statistics on a per-layer basis. The visualization highlights
the granularity and richness of the collected data, emphasizing the tool’s ability
to extract low-level insights across all layers.



5. CONCLUSION AND FUTURE WORK 15

5 Conclusion and Future Work

In this work, we introduced Lumina, a unified and modular framework for perfor-
mance evaluation and hardware profiling of Large Language Models (LLMs). By
combining the flexibility of Python with the low-level control of C++, Lumina
enables fine-grained analysis across both multi-modal and mixed-modal archi-
tectures on diverse hardware platforms. Through extensive profiling of LLaVA-
Mistral-7B, Chameleon-7B, and Deepseek-Janus-Pro-7B, we demonstrated the
framework’s capability to expose hardware-level bottlenecks and reveal differ-
ences in computational efficiency.

Our experiments show that Deepseek-Janus-Pro-7B significantly outperforms
the other evaluated models in both execution time and overall efficiency. Ad-
ditionally, we presented the first OCR-based evaluation of Chameleon-7B and
Deepseek-Janus-Pro-7B, providing insights into their document understanding
capabilities under constrained input resolutions.

Looking ahead, we plan to extend Lumina in two major directions. First, we
aim to develop a Large Language Model capable of interpreting profiling outputs
and producing actionable insights to guide hardware-aware optimization. This
model would serve as an intelligent assistant for understanding low-level perfor-
mance data and suggesting architecture-specific improvements. Second, based on
the collected profiling data, we will focus on identifying the most time-consuming
instructions or operations within LLM execution and applying targeted acceler-
ation techniques. This includes optimizing critical paths using instruction-level
parallelism, cache-aware scheduling, and quantization strategies for both CPUs
and GPUs. These future enhancements will enable Lumina to move beyond
passive profiling and towards active performance optimization, offering a more
intelligent and adaptive approach for evaluating and improving next-generation
LLMs.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: {TensorFlow}: a system for {Large-Scale}
machine learning. In: 12th USENIX symposium on operating systems design and
implementation (OSDI 16). pp. 265–283 (2016)

2. AI, D.: Janus-pro: Deeply coupled vision-language models. In: arXiv preprint
arXiv:2401.05538 (2024)

3. Duan, H., Yang, J., Qiao, Y., Fang, X., Chen, L., Liu, Y., Dong, X., Zang, Y.,
Zhang, P., Wang, J., et al.: Vlmevalkit: An open-source toolkit for evaluating large
multi-modality models. In: Proceedings of the 32nd ACM International Conference
on Multimedia. pp. 11198–11201 (2024)

4. Face, H.: Transformers: State-of-the-art machine learning for pytorch, tensorflow,
and jax. https://huggingface.co/docs/transformers/index (2024)

5. Frederickson, B.: Py-spy: Sampling python profiler. https://github.com/benfred/
py-spy (2024)

6. Fu, L., Yang, B., Kuang, Z., Song, J., Li, Y., Zhu, L., Luo, Q., Wang, X., Lu, H.,
Huang, M., Li, Z., Tang, G., Shan, B., Lin, C., Liu, Q., Wu, B., Feng, H., Liu, H.,

https://huggingface.co/docs/transformers/index
https://github.com/benfred/py-spy
https://github.com/benfred/py-spy


16 O. Cakir et al.

Huang, C., Tang, J., Chen, W., Jin, L., Liu, Y., Bai, X.: Ocrbench v2: An improved
benchmark for evaluating large multimodal models on visual text localization and
reasoning (2024), https://arxiv.org/abs/2501.00321

7. Innovative Computing Laboratory: PAPI: Performance Application Programming
Interface (2025), https://icl.utk.edu/papi/, accessed: 2025-04-03

8. Li, B., Wang, R., Wang, G., Ge, Y., Ge, Y., Shan, Y.: Seed-bench: Benchmark-
ing multimodal llms with generative comprehension (2023), https://arxiv.org/abs/
2307.16125

9. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In: International
conference on machine learning. pp. 19730–19742. PMLR (2023)

10. Liu, H., Li, C., Li, Y., Lee, Y.J.: Improved baselines with visual instruction tuning
(2024), https://arxiv.org/abs/2310.03744

11. Liu, Y., Duan, H., Zhang, Y., Li, B., Zhang, S., Zhao, W., Yuan, Y., Wang, J.,
He, C., Liu, Z., Chen, K., Lin, D.: Mmbench: Is your multi-modal model an all-
around player? In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T.,
Varol, G. (eds.) Computer Vision – ECCV 2024. pp. 216–233. Springer Nature
Switzerland, Cham (2025)

12. NVIDIA Corporation: Nvidia nsight systems. https://developer.nvidia.com/
nsight-systems (2025), accessed: 2025-04-03

13. Perf Community: Perf wiki - linux performance analysis tools. https://perfwiki.
github.io/main/ (2025), accessed: 2025-04-03

14. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

15. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: Proceedings of ICML. pp. 8748–8763 (2021)

16. Team, C.: Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818 (2024)

17. Team, P.: Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/profiler_
recipe.html (2024)

18. Team, T.L.: Llama.cpp: A high-performance c++ inference for llama models. https:
//github.com/ggerganov/llama.cpp (2024)

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need (2023), https://arxiv.org/abs/1706.
03762

20. Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo, S., Ren, W., Arulraj, A.,
He, X., Jiang, Z., Li, T., Ku, M., Wang, K., Zhuang, A., Fan, R., Yue, X., Chen,
W.: MMLU-pro: A more robust and challenging multi-task language understanding
benchmark. In: The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (2024), https://openreview.net/forum?
id=y10DM6R2r3

21. Weaver, V.M., et al.: Performance counters: a survey of hardware monitoring and
analysis tools. ACM Computing Surveys (2013)

22. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., et al.: Transformers: State-of-the-art natural
language processing. In: Proceedings of the 2020 conference on empirical methods
in natural language processing: system demonstrations. pp. 38–45 (2020)

23. Yue, X., Zheng, T., Ni, Y., Wang, Y., Zhang, K., Tong, S., Sun, Y., Yu, B.,
Zhang, G., Sun, H., Su, Y., Chen, W., Neubig, G.: Mmmu-pro: A more robust
multi-discipline multimodal understanding benchmark (2024), https://arxiv.org/
abs/2409.02813

https://arxiv.org/abs/2501.00321
https://icl.utk.edu/papi/
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2307.16125
https://arxiv.org/abs/2310.03744
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://perfwiki.github.io/main/
https://perfwiki.github.io/main/
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://arxiv.org/abs/2409.02813
https://arxiv.org/abs/2409.02813

	Beyond the Shadows: A Deep Dive into Profiling Modern Mixed-Modal and Multi-modal Transformer Models

